

Introduction to Harvesting Thermal Energy

1222500

1111

(m)

Prof Douglas Paul

Director: James Watt Nanofabrication Centre University of Glasgow U.K.

- 7 Nobel Laureates, 2 SI units, ultrasound, television, etc.....
- 16,500 undergraduates, 5,000 graduates and 5,000 adult students
 - £186M research income pa

Moved to Gilmorehill in 1870

Neo-gothic buildings by Gilbert Scott

Famous Glasgow Scholars

William Thomson (Lord Kelvin)

James Watt

William John Macquorn Rankine

Rev Robert Stirling

Rev John Kerr

Joseph Black

John Logie Baird

Adam Smith

James Watt's Laboratory

Many students and professors "with an interest in science" met in this "shop"

James Watt Nanofabrication Centre

James Watt Nanofabrication Centre @Glasgow

E-beam lithography

Süss MA6 optical lith

8 RIE / 3 PECVD

15 technicians + 4 PhD research technologists

750m² cleanroom - pseudo-industrial operation

Processes include: III-V, Si/SiGe/Ge, magnetics, piezo, MMICs, photonics, metamaterials, MEMS, NEMS

Part of EPSRC III-V National Facility **& STFC Kelvin-Rutherford Facility**

Commercial access through Kelvin NanoTechnology

http://www.jwnc.gla.ac.uk/

Veeco: AFMs

Electron Beam Lithography Capability

30 years experience of e-beam lithography

Penrose tile: layer-to-layer alignment 0.46 nm rms

Vistec VB6

0kV 11.9mm x9.00k SE(U)

between different layers:

-> nanoscience: single

molecule metrology

Vistec EBPG5

Micro and Nanotechnology from Glasgow

Thermoelectrics History

History: Seebeck effect 1822

heat -> electric current

Peltier (1834): current -> cooling

) Thomson effect: Thomson (Lord Kelvin) 1852

Radioisotope heater -> thermoelectric generator -> electricity

470 W @ 30 V on launch, after 35 years power = $470 imes2^{-rac{35}{87}}$ = 355 W

Thermoelectric Applications

NASA Voyager I & II

Peltier cooler: telecoms lasers

Cars: replace alternator

Temperature control for CO₂ sequestration

Powering autonomous sensors: ECG, blood pressure, etc.

Thermoelectric Energy Harvesting in Cars

40% exhaust gas losses Fuel consumption ~ η_{powertrain} (kinetic energy + amenities energy)

Thermoelectrics in Cars:

Use waste heat energy (75% of fuel!)

Can reduce fuel consumption ≤ 5%

Provide efficient local cooling

Heat from Car Exhaust

Cost per Watt is too expensive

Background Thermal Physics

Fourier thermal transport

$$\mathbf{Q} = -\kappa \mathbf{A} \nabla \mathbf{T}$$

Joule heating

$$\mathbf{Q} = \mathbf{I^2 R}$$

Q = heat (power i.e energy / time)

Background Physics

Fourier thermal transport

$$\mathbf{Q} = -\kappa \mathbf{A}
abla \mathbf{T}$$

Q = heat (power i.e energy / time)

- **E**_F = chemical potential
- V = voltage
- A = area
- q = electron charge
- g(E) = density of states
- k_B = Boltzmann's constant

Joule heating

$$\mathbf{Q} = \mathbf{I^2 R}$$

- R = resistance
- I = current (J = I/A)
- κ = thermal conductivity
- σ = electrical conductivity
- α = Seebeck coefficient
- f(E) = Fermi function
- μ(E) = mobility

The Peltier Effect

Peltier coefficient is the heat energy carried by each electron per unit charge & time

Full derivation uses relaxation time approximation & Boltzmann equation

)
$$\Pi = -\frac{1}{q} \int (\mathbf{E} - \mathbf{E}_{\mathbf{F}}) \frac{\sigma(\mathbf{E})}{\sigma} d\mathbf{E}$$

$$\sigma = \int \sigma(\mathbf{E}) d\mathbf{E} = \mathbf{q} \int \mathbf{g}(\mathbf{E}) \mu(\mathbf{E}) \mathbf{f}(\mathbf{E}) [\mathbf{1} - \mathbf{f}(\mathbf{E})] d\mathbf{E}$$

This derivation works well for high temperatures (> 100 K)

At low temperatures phonon drag effects must be added

see H. Fritzsche, Solid State Comm. 9, 1813 (1971)

The Seebeck Effect

Open circuit voltage, V = α (T_h – T_c) = $\alpha \Delta T$

Seebeck coefficient,
$$\alpha = \frac{\mathrm{d}\mathbf{V}}{\mathrm{d}\mathbf{T}}$$

units: V/K

Seebeck coefficient = $\frac{1}{q}$ x entropy $(\frac{Q}{T})$ transported with electron

Full derivation uses relaxation time approximation, Boltzmann equation

)
$$\alpha = \frac{1}{\mathbf{qT}} \left[\frac{\langle \mathbf{E} \tau \rangle}{\langle \tau \rangle} - \mathbf{E_F} \right]$$

$$\tau$$
 = momentum relaxation time

$$\bigcirc \quad \alpha = -\frac{\mathbf{k}_{\mathbf{B}}}{\mathbf{q}} \int \frac{(\mathbf{E} - \mathbf{E}_{\mathbf{F}})}{\mathbf{k}_{\mathbf{B}} \mathbf{T}} \frac{\sigma(\mathbf{E})}{\sigma} d\mathbf{E}$$
$$\sigma = \int \sigma(\mathbf{E}) d\mathbf{E} = \mathbf{q} \int \mathbf{g}(\mathbf{E}) \mu(\mathbf{E}) \mathbf{f}(\mathbf{E}) [\mathbf{1} - \mathbf{f}(\mathbf{E})] d\mathbf{E}$$

For electrons in the conduction band, E_c of a semiconductor

$$\bigcirc \ \alpha = -\frac{\mathbf{k}_{\mathbf{B}}}{\mathbf{q}} \left[\frac{\mathbf{E}_{\mathbf{c}} - \mathbf{E}_{\mathbf{F}}}{\mathbf{k}_{\mathbf{B}} \mathbf{T}} + \frac{\int_{\mathbf{0}}^{\infty} \frac{(\mathbf{E} - \mathbf{E}_{\mathbf{c}})}{\mathbf{k}_{\mathbf{B}} \mathbf{T}} \sigma(\mathbf{E}) d\mathbf{E}}{\int_{\mathbf{0}}^{\infty} \sigma(\mathbf{E}) d\mathbf{E}} \right] \quad \text{for } \mathbf{E} > \mathbf{E}_{\mathbf{c}}$$

)
$$\mathbf{f}(\mathbf{1}-\mathbf{f}) = -\mathbf{k_B}\mathbf{T} \frac{\mathbf{d}\mathbf{f}}{\mathbf{d}\mathbf{E}}$$

Expand $\mathbf{g}(\mathbf{E}) \boldsymbol{\mu}(\mathbf{E})$ in Taylor's series at E = \mathbf{E}_{F}

$$\label{eq:alpha} \mathbf{O} \quad \left[\alpha = -\frac{\pi^2}{3q} \mathbf{k}_{\mathbf{B}}^2 \mathbf{T} \left[\frac{d \ln(\mu(\mathbf{E}) \mathbf{g}(\mathbf{E}))}{d \mathbf{E}} \right]_{\mathbf{E} = \mathbf{E}_{\mathbf{F}}} \quad \text{(Mott's formula for metals)} \right]$$

M. Cutler & N.F. Mott, Phys. Rev. 181, 1336 (1969)

i.e. Seebeck coefficient depends on the asymmetry of the current contributions above and below E_F

3D Electronic and Thermal Transport

The Physics of the Thermoelectric Effect

If we ignore energy dependent scattering (i.e. τ = τ(E)) then from J.M. Ziman

$$\sigma = \frac{\mathbf{q}^2}{\mathbf{3}} \int \tau(\mathbf{E}) \nu^{\mathbf{2}}(\mathbf{E}) \left[-\mathbf{g}(\mathbf{E}) \frac{\mathbf{d}\mathbf{f}}{\mathbf{d}\mathbf{E}} \right] \mathbf{d}\mathbf{E}$$

Thermoelectric power requires asymmetry in red area under curve

- Mott criteria ~ 2 x 10¹⁸ cm⁻³
- **Degenerately doped p-Si_{0.7}Ge**_{0.3}
-) α decreases for higher n
 - For SiGe, α increases with T

$$\alpha = \frac{8\pi^2 k_B^2}{3eh^2} m^* T\left(\frac{\pi}{3n}\right)^{\frac{2}{3}}$$

J.P. Dismukes et al., J. Appl. Phys. 35, 2899 (1964)

The Thomson Effect

Derived using irreversible thermodynamics

 $\beta = \mathbf{T} \frac{\mathbf{d}\alpha}{\mathbf{d}\mathbf{T}}$

These relationships hold for all materials

Seebeck, $\boldsymbol{\alpha}$ is easy to measure experimentally

Therefore measure α to obtain Π and β

Carnot Efficiency for Thermal Engines

Carnot Efficiency

Efficiency =

 $\eta = \frac{\text{net work output}}{\text{heat input}}$

$$\eta = \mathbf{1} - \frac{\mathbf{Q}_2}{\mathbf{Q}_1}$$

Carnot: maximum η only depends on T_c and T_h

$$\eta_{\mathbf{c}} = \mathbf{1} - \frac{\mathbf{T}_{\mathbf{c}}}{\mathbf{T}_{\mathbf{h}}}$$

Higher temperatures give higher efficiencies

If a current of I flows through a thermoelectric material between hot and cold reservoirs:

$$\mathbf{Q}_{\mathbf{A}} = \mathbf{\Pi} \mathbf{J} - \kappa \nabla \mathbf{T}$$

but
$$\mathbf{\Pi}=lpha\mathbf{T}$$
 and $\mathbf{J}=rac{\mathbf{I}}{\mathbf{A}}$

$$\mathbf{Q} = \alpha \mathbf{I} \mathbf{T} - \kappa \mathbf{A} \nabla \mathbf{T}$$

Conversion Efficiency

= power supplied to load heat absorbed at hot junction

Power to load (Joule heating) = I²R_∟

Heat absorbed at hot junction = Peltier heat + heat withdrawn from hot junction

Peltier heat = $\Pi I = \alpha I T_h$

) $I = \frac{\alpha(T_h - T_c)}{R + R_L}$ (Ohms Law)

Heat withdrawn from hot junction $= \kappa A \left(T_h - T_c \right) - \frac{1}{2} I^2 R$ ↑ NB half Joule heat returned to hot junction

Thermoelectric Conversion Efficiency

= Carnot x Joule losses and irreversible processes

Thermodynamic Efficiency

Energy Quality

Electromagnetic

Mechanical (kinetic)

Photon (light)

Chemical

Heat (thermal)

Lowest Quality

First proposed as availability by Kelvin in 1851 refined by Ohta

Energy quality describes the ease (i.e. η) with which energy can be transformed

A transition down the table will be more efficient than moving up the table

Therefore solar heating is more efficient than photovoltaic electrical generation

Expanded version from chemistry developed by Odum

Solar Thermal Water Heating System

46% to 74% η for solar energy -> heat conversion are typical

At the mm and µm scale with powers << 1W, thermoelectrics are more efficient than thermodynamic engines (Reynolds no. etc..)

C.B. Vining, Nature Mat. 8, 83 (2009)

NASA with finite Pu fuel for RTG requires high efficiency

Automotive requires high power (heat is abundant)

Industrial sensing requires high power (heat is abundant)

- 0
- Autonomous sensing requires high power (heat is abundant)

As heat is abundant the issue is how to maximise power output NOT efficiency for most applications

Power $\propto \alpha^2 \sigma$

As the system has thermal conductivity κ a maximum ΔT can be sustained across a module limited by heat transport

$$\Delta \mathrm{T}_{\mathrm{max}} = rac{1}{2} \mathrm{Z} \mathrm{T}_{\mathrm{c}}^2$$

- The efficiency cannot be increased indefinitely by increasing T_h
- The thermal conductivity also limits maximum ΔT in Peltier coolers

Higher ΔT_{max} requires better Z materials

Lattice and electron current can contribute to heat transfer

thermal conductivity = electron contribution + phonon contribution = (electrical conductivity) + (lattice contributions) $\kappa = \kappa_{el} + \kappa_{ph}$

For low carrier densities in semiconductors (non-degenerate) $\kappa_{\rm el} \ll \kappa_{\rm ph}$

For high carrier densities in semiconductors (degenerate)

 $\kappa_{\mathbf{el}} \gg \kappa_{\mathbf{ph}}$

Good thermoelectric materials should ideally have $\kappa_{el} \ll \kappa_{ph}$ i.e. electrical and thermal conductivities are largely decoupled

The majority of heat in solids is transported by acoustic phonons

Thermal Conductivity

Lattice contribution:

$$\begin{split} \kappa_{\mathbf{ph}} &= \frac{\mathbf{k}_{\mathbf{B}}}{2\pi^2} \left(\frac{\mathbf{k}_{\mathbf{B}}}{\hbar}\right)^3 \mathbf{T}^3 \int_0^{\frac{\theta_{\mathbf{D}}}{\mathbf{T}}} \frac{\tau_{\mathbf{c}}(\mathbf{x}) \mathbf{x}^4 \mathbf{e}^{\mathbf{x}}}{\upsilon(\mathbf{x})(\mathbf{e}^{\mathbf{x}}-1)^2} d\mathbf{x} \\ \theta_{\mathbf{D}} &= \text{Debye temperature (640 K for Si)} \\ \mathbf{x} &= \frac{\hbar \omega}{\mathbf{k}_{\mathbf{B}} \mathbf{T}} \\ \mathbf{\tau}_{\mathbf{c}} &= \text{combined phonon scattering time} \\ \upsilon(\mathbf{x}) &= \text{velocity} \end{split}$$

J. Callaway, Phys. Rev. 113, 1046 (1959)

Electron (hole) contribution:

•
$$\kappa_{el} = \frac{\sigma}{q^2 T} \left[\frac{\langle \tau \rangle \langle E^2 \tau \rangle - \langle E \tau \rangle^2}{\langle \tau^3 \rangle} \right]$$

T(E) = total electron momentum relaxation time

B. R. Nag, Electron Transport in Compound Semiconductors, (Springer-Verlag, New York USA, 1980)

Empirical law from experimental observation that $\frac{\kappa}{\sigma T}$ = constant for metals

Drude model's great success was an explanation of Wiedemann-Franz

Drude model assumes bulk of thermal transport by conduction electrons in metals

Success fortuitous: two factors of 100 cancel to produce the empirical result from the Drude theory

Incorrect assumption: classical gas laws cannot be applied to electron gas

In metals, the thermal conductivity is dominated by
$$\kappa_{el}$$

$$\frac{\sigma T}{\kappa} = \frac{3}{\pi^2} \left(\frac{q}{k_B}\right)^2 = \frac{1}{L}$$

$$L = \text{Lorenz number} = 2.45 \text{ x } 10^{-8} \text{ W-}\Omega\text{K}^{-2}$$

$$\overline{ZT} = \frac{3}{\pi^2} \left(\frac{q\alpha}{k_B}\right)^2 = 4.09 \text{ x } 10^7 \alpha^2$$
for $\kappa_{el} \gg \kappa_{ph}$

Exceptions:

most exceptions systems with $\kappa_{el} \ll \kappa_{ph}$

some pure metals at low temperatures

alloys where small κ_{el} results in significant κ_{ph} contribution

certain low dimensional structures where $\,\kappa_{\rm ph}\,$ can dominate

Thermoelectric vs Doping of Semiconductors

Bi₂Te₃ ZT Optimisation Through Doping

Bulk 3D materials are limited to ZT ≤ ~1 below 100 °C

G.J. Snyder et al., Nature Mat. 7, 105 (2008)

Bulk Thermoelectric Materials Performance

Nature Materials 7, 105 (2008)

Bulk n-Bi₂Te₃ and p-Sb₂Te₃ used in most commercial thermoelectrics & Peltier coolers

But tellurium is 7th rarest element on earth !!!

Bulk Si_{1-x}Ge_x (x~0.2 to 0.3) used for high temperature satellite applications

Reducing thermal conductivity faster than electrical conductivity:

e.g. skutterudite structure: filling voids with heavy atoms

Low-dimensional structures:

Increase
$$\alpha$$
 by enhanced DOS ($\alpha = -\frac{\pi^2}{3q}k_B^2T \left| \frac{d\ln(\mu(E)g(E))}{dE} \right|_{E}$

Make κ and σ almost independent

Reduce κ through phonon scattering on heterointerfaces

Energy filtering:

$$\mathbf{O} \quad \alpha = -\frac{\mathbf{k}_{\mathbf{B}}}{\mathbf{q}} \left[\frac{\mathbf{E}_{\mathbf{c}} - \mathbf{E}_{\mathbf{F}}}{\mathbf{k}_{\mathbf{B}} \mathbf{T}} + \frac{\int_{\mathbf{0}}^{\infty} \frac{(\mathbf{E} - \mathbf{E}_{\mathbf{c}})}{\mathbf{k}_{\mathbf{B}} \mathbf{T}} \sigma(\mathbf{E}) d\mathbf{E}}{\int_{\mathbf{0}}^{\infty} \sigma(\mathbf{E}) d\mathbf{E}} \right]$$

Y.I. Ravich et al., Phys. Stat. Sol. (b) 43, 453 (1971)

enhance

g

Increase α through enhanced DOS:

$$\alpha = -\frac{\pi^2}{3q} k_B^2 T \left[\frac{d \ln(\mu(E)g(E))}{dE} \right]_{E=E_F}$$
3D
3D
quantum well
quantum wire
quantum dot
$$(E) \int_{e_F} g(E) \int_{e_F} g(E$$

-α increasing —

Length Scales: Mean Free Paths

3D electron mean free path $\ell = \mathbf{v_F} \tau_{\mathbf{m}} = \frac{\hbar}{\mathbf{m}^*} (\mathbf{3}\pi^2 \mathbf{n})^{\frac{1}{3}} \frac{\mu \mathbf{m}^*}{\mathbf{q}}$

3D phonon mean free path

$$\ell = rac{\hbar\mu}{\mathbf{q}} (\mathbf{3}\pi^{\mathbf{2}}\mathbf{n})^{rac{\mathbf{1}}{\mathbf{3}}}$$

$$\Lambda_{f ph} = rac{3\kappa_{f ph}}{C_{f v}\langle {f v_t}
angle
ho}$$

C_v = specific heat capacity

- <vt>t> = average phonon velocity
- ρ = density of phonons

A structure may be 2D or 3D for electrons but 1 D for phonons (or vice versa!)

Material	Model	Specific Heat (x10 ⁶ Jm ⁻³ K ⁻¹)	Group velocity (ms ⁻¹)	Phonon mean free path, Λ_{ph} (nm)
Si	Debye	1.66	6400	40.9
Si	Dispersion	0.93	1804	260.4
Ge	Debye	1.67	3900	27.5
Ge	Dispersion	0.87	1042	198.6

Phonon Wavelengths that Carry Heat

Greater than 95% of heat conduction in Si / Ge from phonons with wavelengths between 1.2 and 3.5 nm

Phonon scattering:

Require structures below the phonon mean free path (10s nm)

Phonon Bandgaps:

Change the acoustic phonon dispersion –> stationary phonons or bandgaps

Require structures with features at the phonon wavelength (< 5 nm)

Phonon group velocity $\propto \frac{dE}{dk_q}$

AgPb₁₈SbTe₂₀ – Nanoparticle Scattering?

 $α = -335 µVK^{-1}$ σ = 30,000 S/m $κ = 1.1 Wm^{-1}K^{-1}$ at 700 K

K.F. Hsu et al., Science 303, 818 (2004)

ZT versus Temperature

p-type

n-type

0

Nanostructures can improve Seebeck coefficient and/or decrease thermal conductivity

Thermoelectric Low Dimensional Structures

- Use of transport along superlattice quantum wells
- Higher α from the higher density of states

Higher electron mobility in quantum well –> higher σ

Lower $\kappa_{\ensuremath{\mathbf{ph}}}$ from phonon scattering at heterointerfaces

Disadvantage: higher κ_{el} with higher σ (but layered structure can reduce this effect)

Overall Z and ZT should increase

TE Whall and EHC Parker, 1987

L.D. Hicks and M.S. Dresselhaus, Phys. Rev. B 47, 12737 (1993)

Modulation Doped Si/SiGe

0

TEM & XRD characterisation of 2D modulation-doped QW superlattice designs

0

Threading dislocation densities from 5x10⁸ to 3x10⁹ cm⁻²

TEM-characterisation

DF STEM: sample 8569 B6

Threading dislocations penetrating from the buffer to the superlattice

Intermediate layer not able to stop the dislocations to cross the interface from buffer to SL -> new design

Threading dislocation density ~3x10⁹ cm⁻²

Many materials with ZT > 1.5 reported but few confirmed by others (!)

No modules demonstrated with such high efficiencies

Due to: measurement uncertainty & complexity of fabricating devices

)
$$\frac{\Delta(\mathbf{ZT})}{\mathbf{ZT}} = 2\frac{\Delta\alpha}{\alpha} + \frac{\Delta\sigma}{\sigma} + \frac{\Delta\kappa}{\kappa} + \frac{\Delta T}{T}$$

 Δx = uncertainty in x = standard deviation in x

Measurements are conceptually simple but results vary considerably due to thermal gradients in the measurements –> systematic inaccuracies

ОТ

Total ZT uncertainty can be between 25% to 50%

- AC current of frequency ω will produce Joule heating = I²R at frequency 2ω
- 0
- Measured voltage, V = IR will have both an ω and 3ω component

$$\bigcirc$$

$$\mathbf{V} = \mathbf{I}\mathbf{R} = \mathbf{I_0}\mathbf{e}^{\mathbf{i}\omega\mathbf{t}}\left[\mathbf{R_0} + \frac{\delta\mathbf{R}}{\delta\mathbf{T}}\mathbf{\Delta T}
ight]$$

$$\mathbf{V} = \mathbf{I_0} \mathbf{e}^{\mathbf{i}\omega \mathbf{t} \left(\mathbf{R_0} + \mathbf{C_0} \mathbf{e}^{\mathbf{i}\mathbf{2}\omega \mathbf{t}}\right)}$$

Differential 3 Omega

Superlattice SOI

 $\alpha = 280 \ \mu V/K$

 σ = 79,000 S/m

κ = 0.17 W/mK

BUT is the 3ω technique valid for superlattices?

NO: lines should be parallel

Measuring Seebeck and Thermal Conductivity

Free Standing Hallbars

Scanning Thermal Microscopy

P. S. Dobson, et al., Rev. Sci. Inst. 76, 054901 (2006)

AFM Characterisation of Hall bar

Thermal AFM across width

Thermal AFM along length

We can measure temperature with sufficient accuracy

Electrical Conductivity vs QW Width

Seebeck Coeffcient

QWs too wide for Seebeck enhancements

J. Appl. Phys. 113, 233704 (2013)

Parasitic Thermal Channels

Thermal Conductivity Measurement

Evaluation of heat flux that is physically transported in the structure

Thermal Conductivity vs QW Width

J. Appl. Phys. 113, 233704 (2013)

Power Factor

0

Modulation doping allows significant higher power factors than bulk J. Appl. Phys. 113, 233704 (2013)

ZT at 300 K

Order of magnitude improved ZTs with 6 times higher power factors than bulk Si_{0.3}Ge_{0.7} at 300 K

J. Appl. Phys. 113, 233704 (2013)

J.R. Watling & D.J. Paul, J. Appl. Phys. 110, 114508 (2011)

Vertical SiGe Designs

Vertical superlattice

narrow QWs

> wide QWs

Vertical (Cross-plane) Superlattice TEs

- Use of transport perpendicular to superlattice quantum wells
- Higher α from the higher density of states

Lower electron conductivity from tunnelling

Lower $\kappa_{\ensuremath{\mathbf{ph}}}$ from phonon scattering at heterointerfaces

Able to engineer lower κ_{ph} with phononic bandgaps

Overall Z and ZT should increase

Vertical Electrical & Thermal Characterisation

Vertical Thermal Conductivity Measurement

Vertical Heat Flux Estimation

Full device

Isotropic structure

half structure

lateral parasitic contribution

Half structure allows parasitics to be removed for accurate heat flux

$$\mathbf{Q} = -\kappa \mathbf{A} \frac{\mathbf{T_c} - \mathbf{T_h}}{\mathbf{L}}$$

Thermal Conductivity Measurement

Full device

Vertical Thermal Conductivity

sample	Thermal conductivity (W/mK)		
8950	5.06 ± 0.43		
8957	5.56 ± 0.25		
8961	5.07 ± 0.03		

Significantly lower κ compared to lateral material

Transfer Line Measurements (TLMs)

Vertical Electrical Conductivity I

Vertical Electrical Conductivity II

h₈

h7

h₆

h5 h4

h3 h₂

h₁

200

3.5

3

150

2.5

2

p-type Superlattice Material Summary

Sample	QW width (nm)	σ (S/m)	к (W/mK)	α (μV/K)	ZT	α²σ (Wm ⁻¹ K ⁻²)
8950_H4	2.85	8,633	5.1	399	0.081	0.0013
8957_G4	2.85	14,099	5.6	113	0.009	0.00017
8961_E4	1.1	13,805	5.1	91.8	0.007	0.00012
p-Si	bulk	11,100	148	148	0.00049	0.00243
p-Ge	bulk	30,300	59.5	300	0.014	0.00272
p-Si _{0.3} Ge _{0.7}	bulk	25,000	6.3	90	0.01	0.00126

p-type doping ~10¹⁹ cm⁻³

Interface roughness scattering dominating results

1D Nanowires

A.I. Boukai et al., Nature 451, 168 (2007)

At Glasgow SET process scaled for 300 K operation (DSTL & MOD interest)

2 contacts nanowire 10M No Treatment Oxidation Resistivity (ohm.cm-1 **Oxidation + Annealing Fully characterised** 1M $N_D = 2x10^{19} \text{ cm}^{-3}$ process modules 100k >98% yield SiO₂ Si 10k 1k 20 5 10 15 25 30 Width (nm) **4 terminal contact** 0.10 **Cross section** nanowire $N_D = 4 \times 10^{19} \text{ cm}^{-3}$ 0.08 **4-Terminal Devices** Resistivity (Ohm-cm) 2-Terminal Devices 0.06 **50 nm Si** 0.04 SOI 0.02 0.00 10 20 30 40 50

Physical Line Width (nm)

Si Nanowires: How many atoms wide?

Nanowire Fabrication on Suspended Hall Bar

Seebeck and Thermal Conductivity

Seebeck coefficient

Thermal conductivity = total – parasitics

45 nm Wide n-Silicon Nanowires

Nanowire Module Development

500 nm tall Si nanowire

03 15KV X60.0K 500nm

Si etch

High density nanowires

50 nm Ge/SiGe nanowires 4 µm deep etched

20.0kV 12.7mm x20.0k SE(U) 2/7/13 11:54

2.00um

Micropelt Microfabrication of BiTe Alloys

System Design: Power Output

Indium Bump Bonding

Limitation: operation is limited to ≤ 125 °C

Investigating new bump process for operation to ≤ 500 °C

Module Power Density

122 Leg Modules

n-type

p-type

Process tested and works well

SOI growths now in progress for final modules

D.M. Rowe (Ed.), "*Thermoelectrics Handbook: Macro to Nano*" CRC Taylor and Francis (2006) ISBN 0-8494-2264-2

G.S. Nolas, J. Sharp and H.J. Goldsmid "Thermoelectrics: Basic Principles and New Materials Development" (2001) ISBN 3-540-41245-X

M.S. Dresselhaus et al. "New directions for low-dimensional thermoelectric materials" Adv. Mat. 19, 1043 (2007)

Further Information

Contact: Prof Douglas Paul Douglas.Paul@glasgow.ac.uk Tel:- +44 141 330 5219

http://userweb.eng.gla.ac.uk/douglas.paul/index.html

Address: School of Engineering, University of Glasgow, Rankine Building, Oakfield Avenue, Glasgow, G12 8LT, U.K.

http://www.greensilicon.eu/GREENSilicon/index.html